# Khovanov-type homologies of null homologous links in $\mathbb{RP}^3$

Daren Chen

Stanford University

April 2nd, 2022

Daren Chen

Khovanov-type homologies of null homologous links in  $\mathbb{RP}^3$  1 / 23

#### Outline

In *S*<sup>3</sup>:

- $K \subseteq S^3 \setminus \{pt\} \cong \mathbb{R}^2 \times I.$
- link projection  $L \subseteq \mathbb{R}^2$ .
- Jones polynomial V(L).
- Khovanov homology Kh(L).
- Spectral sequence  $Kh(m(L)) \Rightarrow \widehat{HF}(\Sigma(S^3, K)).$

In  $\mathbb{RP}^3$ :

- $K \subset \mathbb{RP}^3 \setminus \{pt\} \cong \mathbb{RP}^2 \tilde{\times} I, [K] = 0 \in H_1(\mathbb{RP}^3, \mathbb{Z}).$
- link projection  $L \subseteq \mathbb{RP}^2$ .
- Kauffman bracket (L).
- Khovanov-type homology  $\widetilde{Kh}^{\alpha}(L)$  given by the  $E^2$ -page.
- Similar spectral sequence for null-homologous links in  $\mathbb{RP}^3$ .

## Main results

### Theorem (C.)

Let K be a null homologous link in  $\mathbb{RP}^3$ . There is a spectral sequence converging to to  $\widehat{HF}(\Sigma_0(\mathbb{RP}^3, K))$ , whose  $E^2$  term consists of the Khovanov-type homology  $\widetilde{Kh}^{\alpha_{HF}}(m(K))$ .

#### Definition

A dyad is a tuple 
$$\alpha = (V_0, V_1, f, g), \quad V_0 \xrightarrow{f}_{g} V_1$$
 such that

 $f \circ g = 0, \ g \circ f = 0.$ 

#### Theorem (C.)

For each dyad  $\alpha = (V_0, V_1, f, g)$ , the homology  $\widetilde{Kh}^{\alpha}(L)$  is an invariant of null homologous links in  $\mathbb{RP}^3$ .

Daren Chen

## Outline of the talk

- The spectral sequence relating  $\widehat{HF}(\Sigma(S^3, L))$  and  $\widetilde{Kh}(m(L))$  for links in  $S^3$ .
- Extend the spectral sequence for null homologous links in  $\mathbb{RP}^3$ .
- Combinatorial description of the  $E^2$  pages, extending Khovanov homology to null-homologous links in  $\mathbb{RP}^3$ .

# Link surgery spectral sequence of $\widehat{HF}$

For a knot K in a 3-manifold Y, a framing h of K is a choice of longitude in  $\partial N(K)$ .  $Y_h(K)$  is the 3-manifold obtained by  $Y \setminus N(K) \cup_f S^1 \times D^2$ .

For a *h*-framed knot K in a 3-manifold Y,  $(Y, Y_h(K), Y_{h+m}(K))$  forms a triad of 3-manifolds, and we have a long exact sequence.

$$\dots \to \widehat{HF}(Y) \to \widehat{HF}(Y_h(K)) \to \widehat{HF}(Y_{h+m}(K)) \to \dots$$

In other words,  $\widehat{CF}(Y)$  is quasi-isomorphic to the mapping cone  $\widehat{f}: \widehat{CF}(Y_h(K)) \to \widehat{CF}(Y_{h+m}(K)).$ 

# Link surgery spectral sequence of $\widehat{HF}$

For a *h*-framed link *L* of *n* components in a 3-manifold *Y*, we can apply a similar construction. For each  $I \in \{0, 1\}^n$ , Y(I) is the 3-manifold obtained from *Y* by applying  $h_j$ -framed surgery along  $L_j$  if  $I_j = 0$ , and  $(h_j + m_j)$ -framed surgery along  $L_j$  if  $I_j = 1$ .

#### Theorem ('05, Ozsváth, Szabó)

There is a spectral sequence whose  $E^1$  term is

$$\bigoplus_{I\in\{0,1\}^n}\widehat{HF}(Y(I)),$$

which converges to  $\widehat{HF}(Y)$ .

## Branched double covers of $S^3$

Let K be a link in  $S^3$ . Denote the branched double cover of  $S^3$  branching over K by  $\Sigma(S^3, K)$ .

We will choose a framed link L in  $Y = \Sigma(S^3, K)$ , such that Y(I) corresponds to the branched double cover  $\Sigma(S^3, K_I)$ , where  $K_I$  is I-smoothing of K.

L is defined by the following. For the *i*-th crossings of K, the branched double cover of the vertical arc gives a component  $L_i$  of L.

The branched double cover of  $B^3$  branching over 2 arcs is a solid torus. Different resolutions of  $L \rightarrow$  Different ways to glue solid torus to get the branched double covers.



## Relation with Khovanov homology

Each Y(I) is a branched double cover of  $S^3$  branching over an unlink  $K_I$ , which is  $\#^{(k-1)}S^2 \times S^1$  if  $K_I$  has k-components.

 $\widehat{HF}(\#^{(k-1)}S^2 \times S^1) = V^{\otimes (k-1)}$ , where  $V = \langle v_+, v_- \rangle$ . This is exactly the vector space we associate to the unlink of k components in the reduced Khovanov homology. We can identify these two vector spaces with a canonical isomorphism, given by the basepoint on the link.

What's more, the  $d_1$  map in the link spectral sequence of  $\widehat{HF}$  corresponds to the differential map in the reduced Khovanov chain complex  $\widetilde{CKh}$  under this canonical isomorphism.

To be more precise, it is the differential map in  $\widetilde{CKh}(m(L))$ , where m(L) is the mirror of L. Hence, we obtain the following theorem:

#### Theorem ('05, Ozsváth, Szabó)

Let  $K \subset S^3$  be a link. There is a spectral sequence whose  $E^2$  terms consists of  $\widetilde{CKh}(m(K))$ , which converges to  $\widehat{HF}(\Sigma(S^3, K), \mathbb{F}_2)$ .

## Branched double covers of 3-manifolds

For a link K in a 3-manifold M, branched double covers  $\Sigma_h(M, K)$  are classified by the set of maps

$$\{h: H_1(M \setminus K, \mathbb{Z}) \longmapsto \mathbb{F}_2 \mid h([m_i]) = 1\},\$$

where  $m_i$  is the meridian of the *i*-th component of *L*. Using this, we get the following results about  $\Sigma_h(\mathbb{RP}^3, L)$ :

- If K is nontrivial in H<sub>1</sub>(ℝP<sup>3</sup>, Z<sub>2</sub>), no branched double cover of ℝP<sup>3</sup> branching over K.
- If K is null-homologous, then there are two branched double covers  $\Sigma_h(\mathbb{RP}^3, K)$ , determined by h([r]) for some  $[r] \notin \langle [m_1], [m_2], ..., [m_n] \rangle$ . Denote the one corresponding to h([r]) = 0 by  $\Sigma_0(\mathbb{RP}^3, K, r)$ .

# Link projections in $\mathbb{RP}^2$

Resolutions of null-homologous link projection L consists of null homologous circles in  $\mathbb{RP}^2$ , each dividing  $\mathbb{RP}^2$  into a disk and a Möbius band.

For a point  $P \in \mathbb{RP}^2 \setminus L$ , we say P is encircled by a null homologous circle in  $\mathbb{RP}^2$  if it lies in the disk bounded by the circle. Define  $e_s(P)$  as the number of circles in  $L_s$  encircling  $P \mod 2$ .



# Branched double covers of $\mathbb{RP}^3$ over unlinks

Let  $C_P$  denote the circle in  $\mathbb{RP}^3$ , which is the union of the fiber of  $\mathbb{RP}^3 \setminus \{*\} = \mathbb{RP}^2 \tilde{\times} I$  over P with \*.

#### Lemma

Let L be a link projection in  $\mathbb{RP}^2$ , where each smoothing  $L_s$  consists of  $k_s$  unknots, then we have

$$\Sigma_0(\mathbb{RP}^3, L_s, C_P) = \begin{cases} (\mathbb{RP}^3 \# \mathbb{RP}^3) \# (S^1 \times S^2)^{\# (k_s - 1)} & \text{if } e_s(P) = 0, \\ (S^1 \times S^2)^{\# k_s} & \text{if } e_s(P) = 1. \end{cases}$$

# The spectral sequence in $\mathbb{RP}^3$

For a link projection L in  $\mathbb{RP}^2$ , pick a point  $P \in \mathbb{RP}^2 \setminus L$ . We can use similar construction to form a link spectral sequence using the branched double covers  $\Sigma(\mathbb{RP}^3, L_s, C_P)$ .

The corresponding Heegaard Floer homology of these branched double covers are

$$\widehat{HF}(\Sigma_0(\mathbb{RP}^3, L_s, C_P)) = \begin{cases} W \otimes V^{\otimes (k_s-1)} & \text{if } e_s(P) = 0, \\ \overline{V} \otimes V^{\otimes (k_s-1)} & \text{if } e_s(P) = 1, \end{cases}$$

where  $W = \widehat{HF}(\mathbb{RP}^3 \# \mathbb{RP}^3) = \langle a, b, c, d \rangle$ ,  $V = \widehat{HF}(S^1 \times S^2) = \langle v_+, v_- \rangle$ and  $\overline{V} = \widehat{HF}(S^1 \times S^2) = \langle \overline{v}_+, \overline{v}_- \rangle$ . These give the  $E^1$  page of the spectral sequence.

## The map $d_1$ in the spectral sequence

In the spectral sequence, the map  $d_1$  corresponds to perform a knot surgery to the component corresponding to a crossing in the link projection. The effect on the 3-manifold is to change  $\Sigma(\mathbb{RP}^3, L_s, C_P)$  to  $\Sigma(\mathbb{RP}^3, L'_s, C_P)$ , where  $s' \in \{0, 1\}^n$  is differed from s in one slot, changing 1 to 0.

There are 3 such kinds of bifurcations for link projections in  $\mathbb{RP}^2$ .



The maps  $d_1$  associated to the  $2 \rightarrow 1$  and  $1 \rightarrow 2$  bifurcations are similar to those in the spectral sequence for links in  $S^3$ , which corresponds to the differential map in the reduced Khovanov chain complex.

The  $1 \to 1$  bifurcation is special for links projections in  $\mathbb{RP}^2$ . They represents the surgery cobordisms  $\mathbb{RP}^3 \# \mathbb{RP}^3 \to S^1 \times S^2$  or  $S^1 \times S^2 \to \mathbb{RP}^3 \# \mathbb{RP}^3$ , depending on the value  $e_s(P)$ .

The corresponding Kirby diagrams are as following.



Khovanov-type homologies of null homologous links in RP<sup>3</sup> 16 / 23

Calculations in  $\widehat{HF}$  gives the following:

Proposition

For the cobordism  $Z_a$  associated to (a), the induced map on  $\widehat{HF}$  is

$$f = F_{Z_a} : \widehat{HF}(\mathbb{RP}^3 \# \mathbb{RP}^3) \longmapsto \widehat{HF}(S^1 \times S^2)$$
$$f(b) = f(c) = \overline{v}_-, \ f(a) = f(d) = 0.$$

For the cobordism  $Z_b$  associated to (b), the induced map on  $\widehat{HF}$  is

$$g = F_{Z_b} : \widehat{HF}(S^1 \times S^2) \longmapsto \widehat{HF}(\mathbb{RP}^3 \times \mathbb{RP}^3)$$
  
 $g(\overline{v}_+) = b + c, \ g(\overline{v}_-) = 0.$ 

In particular,  $f \circ g = 0, g \circ f = 0$ .

## The main theorem

#### Theorem (C.)

Let K be a null homologous link in  $\mathbb{RP}^3$ . There is a spectral sequence converging to to  $\widehat{HF}(\Sigma_0(\mathbb{RP}^3, K))$ , whose  $E^2$  term consists of the Khovanov-type homology  $\widetilde{Kh}^{\alpha_{HF}}(m(K))$ .

# Combinatorial description of $E_2$ page

Given a link projection  $L \subseteq \mathbb{RP}^2$ , pick a point M on the link projection L, and pick a point P in the complement  $\mathbb{RP}^2 \setminus L$ .

Take another input, a dyad 
$$lpha = (V_0, V_1, f, g), \quad V_0 \overbrace{\searrow g}^t V_1$$
 such that

 $f \circ g = 0$ ,  $g \circ f = 0$ . Then we can define the chain complex  $(\widetilde{CKh}^{\alpha}(L), d)$  as usual (reduced) Khovanov chain complex.

For the  $E^2$ -page, the dyad is  $\alpha_{HF} = (W, \overline{V}, f, g)$ .



# $d^2 = 0$

It is enough to check link projections with 2 crossings.



The algebraic relations we need are:

•  $V_0, V_1$  are trivial V-bimodules;

• 
$$f \circ g = 0, g \circ f = 0.$$

# Well-definedness of the homology

#### Proposition

The homology  $\widetilde{Kh}^{\alpha}(L)$  is a link invariant for null homologous links in  $\mathbb{RP}^3$ .

- Choice of M: Different choices induce chain automorphism.
- Choice of P: Divide  $\mathbb{RP}^2 \setminus L = R_0 \sqcup R_1$  according to linking number of  $C_p$  with L. Pick P in  $R_0$ .
- Different projections: Check invariance under Reidemeister moves in  $\mathbb{RP}^2.$

Therefore, we get a link homology  $\widetilde{Kh}^{\alpha}(K)$  for null homologous links in  $\mathbb{RP}^3$ .

The homology defined in [APS] corresponds to  $\widehat{HF}^{\alpha}$  with  $\alpha = (\mathbb{F}_2, \mathbb{F}_2, 0, 0)$ .

Reidemeister moves in  $\mathbb{RP}^2$ 





